开源调测利器:I2C电流计 功率计
小飞机的板子画成这样:

然后就开始溜号了。。。真心希望有小伙伴能来一起搞一下啊~
溜号是因为这次想在马达控制中加入电流闭环,所以就想测一下720空心杯带桨和不带桨状态下用锂电池供电的电流,正当要测时发现手上的万用表没电了,很是恼火。并且我的万用表也无法连续记录数据,这样就无法得到锂电池的放电曲线,所以干脆自己做一个吧!
小飞机的板子画成这样:

然后就开始溜号了。。。真心希望有小伙伴能来一起搞一下啊~
溜号是因为这次想在马达控制中加入电流闭环,所以就想测一下720空心杯带桨和不带桨状态下用锂电池供电的电流,正当要测时发现手上的万用表没电了,很是恼火。并且我的万用表也无法连续记录数据,这样就无法得到锂电池的放电曲线,所以干脆自己做一个吧!
在前面的文章 卡尔曼滤波 中曾讲解过卡尔曼滤波在惯性导航和飞行姿态控制中的应用,今天来聊一聊卡尔曼滤波在信号去噪中的应用。
卡尔曼滤波(Kalman Filtering)是一种用于估计系统状态的数学方法,它通过考虑系统的动态模型和传感器测量,以最优的方式来融合信息,从而提供对系统状态的最优估计。卡尔曼滤波广泛应用于控制系统、导航系统、信号处理、机器人技术、金融领域等各种领域。
以下是卡尔曼滤波的一些关键要点:
状态空间模型: 卡尔曼滤波将系统建模为一个状态空间模型,其中包括状态变量、状态转移方程和观测方程。状态变量表示系统的内部状态,状态转移方程描述系统如何从一个时刻的状态到下一个时刻的状态演变,观测方程描述了如何从系统状态中获取观测数据。
递归滤波: 卡尔曼滤波是递归的,意味着它在每个时间步骤上都会更新状态估计,同时考虑当前的观测数据和先前的状态估计。
估计与预测: 在每个时间步骤上,卡尔曼滤波执行两个主要步骤:预测和更新。预测步骤使用状态转移方程来估计下一个时刻的状态,而更新步骤使用观测数据来校正预测,并生成最优的状态估计。
协方差矩阵: 卡尔曼滤波通过协方差矩阵来表示状态估计的不确定性。协方差矩阵包含了关于状态估计的信息,可以告诉我们状态估计的精确性和可信度。
最小均方误差: 卡尔曼滤波的目标是最小化状态估计的均方误差,从而提供对系统状态的最优估计。
卡尔曼滤波是一种用于估计具有噪声的动态系统状态的优秀方法。虽然它通常用于估计物理系统的状态,但也可以应用于信号处理和信号去噪中。以下是卡尔曼滤波在信号去噪中的应用示例:
在前面的文章 信号去噪 中简单介绍了常见的去噪方法,以均值滤波和中值滤波做了示例,今天再继续介绍小波变换。
小波变换(Wavelet Transform)是一种信号处理和数据分析技术,用于在时间和频率上分析信号的不同特征。与傅立叶变换不同,小波变换具有多尺度分析的能力,允许在不同的时间尺度上检测信号中的特征。
小波变换的核心思想是将一个信号分解成不同尺度和频率的小波成分,然后可以根据需要重构原始信号。这种分解和重构过程涉及到两个主要函数:小波函数(wavelet)和尺度函数(scaling function)。
小波函数通常表示为 ψ(t),它是一个用于分析信号的基本波形。不同的小波函数对信号的不同特征有不同的敏感度。
尺度函数通常表示为 φ(t),它是一个用于描述信号在不同尺度上的版本的函数。通过对尺度函数进行缩放和平移,可以生成不同尺度的小波函数。
在实际世界中,我们所获得的信号通常都包含了各种干扰和噪音。这些噪音可能来自电子设备、环境条件或传感器本身,它们会损害信号的质量,降低信息提取的准确性。因此,信号去噪和降噪技术在科学、工程和医学领域中扮演着至关重要的角色。本文将介绍信号去噪的概念、方法和应用。
信号去噪是指从受到噪音干扰的信号中提取出目标信号的过程。目标信号包含我们真正关心的信息,而噪音则包括不相关的、干扰性的信号。信号去噪的目标是尽可能地减少或消除噪音,以恢复原始信号的清晰度。
信号去噪广泛应用于各个领域:
医学领域:在脑电图(EEG)和心电图(ECG)等生物医学信号中去除肌肉运动和电极噪音,以诊断疾病。
通信领域:在无线通信中,去除传输过程中的噪音,提高通信质量。
地球科学:去除地震信号中的地壳噪音,以便检测地震。
图像处理:在数字图像中降噪以提高图像质量,例如在医学成像中。
音频处理:去除录音中的杂音,以改善音频质量。
当涉及到控制系统中的精确调节和稳定性,PID(比例-积分-微分)控制算法是一种不可或缺的工具。本文将简单介绍PID控制算法,从基本概念到具体实现,一起了解如何使用PID控制算法来优化控制系统。
PID(比例-积分-微分)控制算法作为一种广泛应用的控制策略,在自动化控制系统中扮演着不可或缺的角色。无论是工业生产中的温度控制、机器人运动控制,还是飞行器、医疗设备等领域,PID控制都发挥着重要作用。
PID控制算法的核心思想在于基于当前的误差、过去的误差累积和未来的误差变化来调整控制输出,以实现系统的稳定性和响应性能。其中,比例项用于快速响应误差的大小,积分项用于消除稳态误差,而微分项则有助于预测系统未来行为,从而改善系统的稳定性。这三个组成部分相互作用,使得PID控制能够在多样化的应用中展现出强大的适应性。
然而,调整PID参数并不是一项简单的任务。不同的系统和应用需要不同的参数设置,错误的参数选择可能会导致系统不稳定、震荡或超调。因此,本文将详细介绍不同的调参方法,从手动调节到自动调参算法,为读者提供指导。此外,文章还将通过实际应用案例,深入分析如何根据具体需求来调整PID参数,从而实现最佳的控制效果。
除了介绍基本的PID控制算法,本文还将涵盖一些改进的PID变种,如增强型PID和模糊PID,以应对一些特殊情况下的挑战。这些改进算法在一些复杂的控制系统中能够提供更好的性能和稳定性。
最后,本文还将提供使用Python等编程语言实现PID控制算法的示例代码,帮助读者更好地理解算法的实际应用。通过结合理论和实践,读者将能够掌握PID控制算法的原理和实现方法,为他们在控制系统中的工作提供有力的支持。
在前面的文章 信号频谱分析与功率谱密度 中,我们初步探讨了信号频谱分析的概念,并介绍了其数学工具。本篇文章将结合实例,进一步探讨频谱分析在音频信号处理中的应用。
音频信号的频谱分析是一种将时域中的音频信号转换为频域表示的过程,从而可以观察信号在不同频率上的能量分布。这种分析可以帮助我们理解音频信号的频率成分、谐波结构以及其他特征,对于音频处理、音乐分析、语音识别等应用具有重要意义。
以下是进行音频信号频谱分析的基本步骤:
采样与预处理:从原始音频信号中进行采样,将连续的音频信号转换为离散的采样点。通常还需要对采样数据进行预处理,如去除直流分量、归一化等。
窗函数应用:为了在频谱分析中减少频谱泄露问题,通常会将信号分成一小段一小段,并在每一段上应用窗函数。常用的窗函数包括汉明窗、矩形窗等。
傅里叶变换:对每个窗口内的采样点进行傅里叶变换,将时域信号转换为频域信号。傅里叶变换可以得到信号在不同频率上的振幅和相位信息。
频谱表示:将得到的频谱数据以图形方式表示,通常使用频谱图显示信号在不同频率上的能量分布。横轴表示频率,纵轴表示振幅或能量。
谱线解释:分析频谱图中的峰值、谷值、频率分量,了解信号的频率特征,是否存在谐波结构,是否有噪音等。
功率谱密度计算:从频谱中计算出信号的功率谱密度,表示不同频率范围内的信号功率。功率谱密度图可以更清晰地表示信号在频域上的能量分布。
降噪与滤波:根据频谱分析的结果,可以进行降噪和滤波操作,去除不需要的频率分量或噪音,提升信号质量。
特征提取:从频谱图中提取有用的特征,用于后续的音频处理任务,如音乐分类、声音识别等。
当我们涉及无线通信、信号处理和电子设备时,信号频谱分析与功率谱密度是两个至关重要的概念。它们帮助我们理解信号的特性、噪声和频率分布,从而优化通信系统、设计滤波器以及进行故障诊断。本文将初步探讨信号频谱分析与功率谱密度,一起理解其在工程和科技领域的应用。
信号频谱分析是将信号从时域转换到频域的过程,以便我们可以看清信号在各个频率上的分布情况。频谱图显示信号中各频率分量的强度,帮助我们分析信号的频率成分、调制方式以及可能的噪声。常见的频谱分析方法包括傅里叶变换、快速傅里叶变换(FFT)、小波变换等。
傅里叶变换是信号处理领域中的基础概念,它是将信号从时域转换到频域的重要方法。通过傅里叶变换,我们可以揭示信号的频率成分,理解信号的周期性和振幅,从而在许多领域中实现广泛的应用。本文将介绍傅里叶变换的基本原理、应用以及在科学和工程中的重要性。
今天分享一个简单强大的时序图绘制工具——WaveDrom。
Digital Timing Diagram everywhere
WaveDrom draws your Timing Diagram or Waveform from simple textual description.
It comes with description language, rendering engine and the editor.
WaveDrom editor works in the browser or can be installed on your system.
Rendering engine can be embeded into any webpage.
Wavedrom 是一款功能强大且简单易用的文本转图表工具,被广泛应用于生成时序图、波形图等交互式波形。其特点在于使用简单的文本语法,使得开发人员能够以可视化的方式表示数字信号和时间序列数据。Wavedrom 的优势在于其高度灵活性和可扩展性,使用户能够快速绘制复杂的波形和图表,并轻松与其他文档和代码进行整合。